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Some Issues on Testing Real-Time Systems
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Abstract- This paper gives an overview on real-tim system testing. It shows briefly the main works on testing systems which do not specify timing constraints. All of these methods consider a system as an automaton composed of states and transitions (interactions between the environment and the system). Then, it presents some models for the specification of real-time systems. It will detail our main contributions to testing real-time systems. It consists of various techniques that we have developed since last years. We will end by the the presentation of an adapted testing architecture for testing real-time systems.
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1 Introduction

Conformance testing is the main validation technique adopted by the industry. Then, one of the most important challenge today is to develop practical and useful methodologies considering the derivation and the execution of test cases as well as the guarantee of maximum test coverage. In order to offer a correct industrial product, we need validation techniques which use more and more formal techniques. In this study, we focus on a conformance testing. Testing aims to detect errors but not to prove correctness.

The testing process is usually composed of two steps:

1- Test case generation: Derivation of test cases from the specification.It may be exhaustive of partial. In order to test a system part, a test case is composed of: the preamble (action sequence from the initial state), the testing of the system part and the postamble (action sequence to go back to the initial state).

2- Test case execution: Experimentation of test cases on the implementation and the observation of the verdict which may be: success, fail or inconclusive verdict can be provided).

In order to check the conformance testing of any implementation,  we execute these sequences by means of a testing architecture. This architecture consists of two parts:

- the Implementation Under Test (IUT), composed of two Point of Control and Observation (PCO), one for the submission of the input events and another one for the observation of the output events.

- the tester (or the observer), which execute a specific algorithm able to submit and to control the test of the implementation. This part uses its own clocks  supposed  to be synchronized with the ones of the IUT.

This paper is organized as follows : in section 2, we present the main models about real-time systems, the maintechniques for protocol testing and the recent studies on timed testing. Section 3 presents our main contributions on test case generation. Three kind of techniques are studied, they are based on label translation or on timed test purposes or on exhaustive generation. Section 4 focusses on timde test execution and an appropriate architecture for timed testing. Section 5 concludes and presents some ideas

about next developments.

2 Related work

2.1 Timed system modelling 

A timed system is a reactive system waiting and sending actions satisfyingç timing constraints. It may be a multimedia protocol or a real-time system.

Many models have been presented with discrete time [1,2,3] or  continuous time [4,5]. The Alur-Dill automata model (proposed in 1991 [6] and confirmed in 1994 [4]) has the best theoretical foundations. It describes any system as a finite state/transition model. An event may happen if its timing constraints (inequations on system clocks) are satisfied. Clocks may be reset when an event happens on a transition. 

A clock valuation is defined as a combination of clock values The valuation number is infinite so the system will have an infinite state number. Alur-Dill have suggested an equivalent model: the region graph model.

All the cock valuations where the system behaves in the same  manner are gathered in distinct sets called a clock regions. The resulting region graph is another finite state/transtion system where a state is a couple (e,r), e is one the state of the automaton and r is a clock region where the event has to happen.I use this model in all my studies.

2.1.1 Region graph model

This model has been formally defined in [4]. A Region Graph is an equivalent representation of a timed automaton where a state collects all the moments where the system has the same behavior. Clearly, a region  graph state is composed of  a timed automaton state (representing the system behavior) and a clock region (it is a polyhedron representing the inequations of the state timing constraints). Finally, we can say that in region graphs the timing constraints are moved to states. The transformation algorithm of timed automata into region graphs is defined in [4]. The theoretical framework about this model

is detailed in [4].

Definition 1:

A region graph RG is a tuple (ARG, SRG, s0RG, RRG, CRG, ERG) where ARG is the set of actions, SRG is the set of states, s0RG is the initial state, RRG is the set of clock regions of RG, CRG is the set of clocks, ERG is the transition relation defined as:

-(s,s',a) from state s to state s', labelled with the symbol a. s is a tuple (x,R) where x is a state of the initial timed automaton and R is the clock region during which a can be executed. s' is  a tuple (x',R') where x' is  a state of the initial timed automaton and R' is the reached clock region.

-(s,s',delta) from state s to state s', representing the elapse of time, needed to reach the clock region R' from R. 

2.2 Protocol conformance testing

2.2.1 Finite state machine based methods

Historically, finite state machine (FSM) have been widely used for the study of integrated (electronics) components properties [7, 8]. In the networks and telecommunications area, they were widely used to specify communicating softwares such as telecommunication protocols [9].

Since the eighties, different test generation techniques have been proposed, mainly from a variant FSM: the Mealy machine [10,11,12,13,14,15,16]. The main feature of this model is to specify the exchange of messages between a system and its environment. A Mealy machine transition

is fired, in a deterministic way, when an input event is received from the environment. The execution of the transition may produce a possible output event toward the environment. A formal definition of the model is given below.

The major works on test generation from this model consist of:

- the specification of a system by a Mealy machine SPEC; 

- the assumption that the implementation of the system can also be described as a Mealy machine IMP;

- the identification of the structure of SPEC on the structure of the IMP.

Within this context, it may occur three classes of errors in IMP according to SPEC [14]:

- An output error occurs when an IMP transition produces a different output from the corresponding transition in SPEC;

- A transfer error occurs when the execution of an IMP transition reaches a different state according to the execution of the corresponding transition in SPEC;

- A state number error occurs when IMP holds more or less

states than SPEC.

Here, the implementation is seen as a black box: the internals actions are not observable from the environment. During the execution of the implementation, it is not possible to observe neither the current state nor the transition firing. The only possible observations are the output events that are produced by the implementation after consuming input events. This restriction on the observation makes difficult the detection of the different errors, especially the transfer errors. We study methods where the implementation structure is deduced from the set of sequences of input and output events exchanged with its environment.

Some other FSM based test generation methods are split in two directions:

- The first direction consists of the optimization of the size of the set of test cases by searching a compromise between UIO and W methods. For example [14], proposes to reduce the number of W sequences. This method Wp consists to compute separately for each state only a minimal set of shortest input sequences. From another way, [15] proposes to compute several UIO sequences for each state without a UIO sequence. 

- The second direction studies the possibilities of reducing the assumptions about the methods. For example in this field, [17] has been interested in deriving test cases without assuming that the implementation can be reset to the initial state by a (ri). [18] studies test generation methods without assuming that the FSM is minimal. [19,20,16] deal with test generation techniques from non deterministic FSM.

2.2.2 Test purpose based methods

These methods derive test cases from  test purpose given by the designer. Here, in general, systems are specified by the Labelled Transition System model (LTS) [21,22]. In fact, a test purpose is an abstract description of the specification. It helps the designer to choose behaviors to test and then to reduce the specification exploration. A test purpose is a graph where final states may be either accepting states (the purpose is reached) or refusing states (behavior parts which would be rejected). It must contain events which should be found on the specification.

2.3 Testing timed systems

Timed testing is a new research field. Recently, some studies have been undertaken. There are many works dedicated to the verification of timed automata [23,24,25]. Some tools [26,27] have been developed for this purpose. But for timed testing there is only some teams who focus  on this aspect. [28] deals with an adaptation of the canonical tester for timed testing and it has been extended in [29].

In [30], the authors derive test cases from specifications described in the form of a constraint graph. They only consider the minimum and the maximum allowable delays between input/output events.

[31] proved that exhaustive testing of deterministic timed automata with a dense interpretation is theoretically possible but is still difficult in practice. They suggested to perform a kind of discretezation of the region graph model. Their discretezation step size takes into account  the number of clocks as well as the timing constraints.  Then they derive test cases from the generated model. The second study [32] differs from the previous one by using discretezation step size depending only on the number of clocks which reduces the timing precision of the action executions. The resulting model has to be translated into a kind of Input/Output Finite State Machine which could be done only under strong and unrealistic  assumptions. Finally they extract test cases by using the Wp-method [14]. [33] presents a specific testing technique which suggests a practical algorithm for test generation. [34] gives a particular method for the derivation of the more relevant inputs of the systems.[35] suggests a technique for translating a region graph into a graph where timing constraints are expressed by specific labels using clock zones. The last study [36], suggests a selection technique of timed tests from a restricted class of dense timed automata specifications. It is based on the well known testing theory proposed by Hennessy in [37]. As we can notice, there are different ways to tackle the problem of timed testing. All of these studies focus on reducing the specification formalism in order to be able to derive test cases feasible in practice. There is no real attempt to generate test cases from the region graph. Many techniques find a coarse equivalence classes of clock valuations in order to reduce the state explosion of the generated region graphs.

3 Timed test case generation

3.1 Label translation

A methodology exploring this way has been initiated in [38], and then continued and adapted in [35].

In [38], the authors proposed a method which consisted in splitting again the clock zones into the regions which compose them. The obtained automaton was actually testable but it was also extremely big, because that transformation caused the system to forget its minimization.

In fact, in order to express again the time constraints on the transitions, all we have to do is to rename the transition labels as follows : if the transition is labelled by an input symbol, we add the clock zone of the head state of the transition ; if it is labelled by an input symbol or the delay symbol (also often denoted as delta) which represent the elapse of time, we add the clock zone of the tail state of the transition. Consequently, a transition (si,zi) --?A((sj,zj) becomes (si,zi) --?Azi((sj, zj)

The obtained system is a minimal labelled transition system upon which any classical test sequences generation method based on LTS can be applied. On the other hand, it can be translated into an untimed input/output finite state machine, from which all the methods exposed in the previous section can extract test sequences.

3.2 Timed test purpose based methods

The exhaustive generation techniques cost very much. The industry reduce this cost by deriving tests test purposes suggested by testers In fact, we will only test some system parts.

In this part, we will see how to extract executable test cases from properties expressed by users. Their timing constraints may be the same than the specification one.

Two techniques have been developed: one considering the same constrains and another one considering different ones. 

3.2.1 Test purpose constraints similar to the specification ones 

Here the specification is first translated a region graph [39, 40]. The time purpose is also translated into the same model. The test purpose expresses finite properties. It is an acyclic graph. The entire test purpose graph is traversed. When a path (from the initial state) is found in a specification path, this later will be used as a test case.

The extraction algorithm is described as:

Algorithm

INPUT: OT(test purpose), S(specification)

OUTPUT:CT(test case set)

BEGIN

Translation of S into region graph RGS

Translation of  OT into region graph RGOT

COT:= possible paths of RGOT

compteurOT := 0

FROM compteurOT = 0 TO Length(COT)

OTcourant := COT[compteurOT]

CT:= CT  search(OTcourant, S)

ENDFOR

END

Search(Ot,S): returns a set of S paths containing OT.

EndAlgorithm

Example:

Let S a specification defined in FIG-1 and ot a test purpose defined in FIG-2.
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FIG 1:The specification
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FIG-2:A test purpose

Clock regions of  S are illustrated by Table 1

Regions 


 Definition 
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Table-1: Clock regions common to S and the test purpose
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FIG-4:Minimal region graph
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FIG-5:Test purpose region graph

Finally, an extracted test case is shown in en FIG-6.

We notice the test case is an acyclic graph. In order to guarantee a correct implementation of the action A, we have to submit all the paths starting at the initial state of the region graph of the test purpose. All of them have to response the verdict success except those which end with fail.
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FIG-6: Timed test case

3.2.2 Test purpose constraints different from the specification ones 

When the user timing constraints are different from the specification on, the extraction is more difficult. The extraction is done by means of a synchronous product between he specification and the test purpose [41]. It aims to generate a similar structure to the region graph one. It is a kind of intersection between the specification and the test purpose. The generation rules of a synchronous product is detailed in the following paragraph.

Let S and OT two regions graphs (S for the specification and OT for the test purpose). The synchronous product between S and OT is called PS. The following algorithm shows how to derive all the paths of this product. A path is a sequence of transitions labelled by tuples (a, pass, inconclusive) where:

- a is the action to execute,

- pass is the set of valuations where this action is allowed only on the specification,

- inconclusive is the set valuations where the action is allowed on the specification but not on the test purpose.

Algorithm

INPUT:

 TP(test purpose), S(specification part), 

 PTP (set of TP paths), PS(set of S paths)

OUTPUT:

SP(set of paths of the synchronous product)

BEGIN:

countSP := 0

 
FOR  countTP = 0 TO LENGTH(PTP)

  
/* computation of all  TP paths */

  
currentTP := PTP[countTP]

  
Spaths:= search (currentTP, S)

1.
FOR countpath=0 TO LENGTH(Spaths)

   

path:=Spaths[countpath]

   

countTR:=0

2.

FOR countTR=0 TO LENGTH(path)

       

tp[countTR].Label := path[countTR].Label

       

tp[countTR].pass:=

        

CReg(path[countTR].StartingState)

       

tp[countTR].inconclusive := {}

      
ENDFOR

lengthTP:=countTR  

      
countTR:=0

3.

FOR count=0 TO LENGTH(currentTP)

        
label:=currentTP[count].Label

4.


WHILE (label <> tp[countTR].Label)

            
countTR := countTR + 1

            
tp[countTR].inconclusive:= tp[countTR].pass \

                
CReg(currentTP[count].StartingState)

            
tp[countTR].pass := tp[countTR].pass  (
                  
CReg(currentTP[count].StartingState)




ENDWHILE

         ENDFOR

SP[countSP].length := lengthTP

 

SP[countSP].tp := tp

      
countSP := countSP + 1

ENDFOR

ENDFOR

EndAlgorithm

This algorithm can be commented as follows:

1- The tp path is a partial path of the specification, then we extract in this loop all the specification paths containing a tp path;

2- The tp is first set with the transition from the specification path. Each transition is labelled by a tuple (label, pass, inconclusive). label is deduced from the transition ts of the specification. pass is the region of the starting state of ts. inconclusive is set to the empty set.

3- This loop looks for the common transitions between tp and the specification. 

Here the pass region is set to the intersection between the specification region and the test purpose region. The inconclusive region is set with the specification region less the test purpose one.

4- This loop provides to skip the transitions which are found on the test purpose since the test purpose is a partial path of the specification path.

Finally, test cases are all the paths of the synchronous product. We should mention that, the synchronous product may also generate a test case where the regions R1 and R2 of two successive states s1 and s2 are not time successor. In this case, it could be difficult to test any action in R2: this clock region is not always reachable by the system clocks.

Example

Let the specification shown in FIG-7:
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FIG-7: The timed automata of S

We will extract executable test cases of the test purpose shown in FIG-8
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FIG-8: A test purpose

The clock regions of S are illustrated on FIG-9 and the region graph of the test purpose is shown in FIG-10.
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Fig-9: Clock regions of S
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FIG-10: The region graph of the needed part of the specification

The clock regions of the test purpose are shown in  FIG-11 and the related region graph is shown in FIG-12.
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FIG-11: Clock regions of the test purpose
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FIG 12: Region graph of the test purpose

The derived test cases are shown in FIG-13. We notice that the action ?c is not specified in the test purpose but is expressed in the executable test case. We can also notice that the inconclusive region of the action !e is not empty since the test purpose constraint x<1 is included in the specification one x < 2.
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FIG-13: The obtained test case

3.3 Exhaustive generation 

The aim is to derive a minimum set of test cases able to guarantee the characterization of all the states of the system.[42,43] For each state st, we derive a set of sequences accept that the system accepts in the state st and a set of sequences ref that the system refuses in the state st. The combination of these two sets should be different for each couple of different states of S. After each state, wa can have  three possibilities are: 

-output action as: we submit a preamble and the we observe the output action (should be as). Then, we execute a  postamble. 

- input action ae: we submit a preamble, and then we submit the action. We check after that the postamble is accepted by the implementation,

- time elapsing delta: we submit a preamble, we wait for the duration the elapsing time (calculated on the fly). Finally, we execute the adequate postamble.

We handle deterministic specifications, then the sets of sequences exist always. Presently, this technique is the first one dealing with the entire region graph.

3.3.1 Conformance relation

In any, exhaustive test generation technique, a conformance relation have to be defined. In our case, the defined relation is a timed trace equivalence (action traces with their timed constraints). Two region graphs are equivalent (timed trace) if for all the timed traces found on the specification, we can find one on the implementation. This proof of thisequivalence is done by the following rule the scheduling of actions is the same between the specification and the implementation. and the satisfaction of the same timing constraints (actions executed defined clock regions). The later rule is impossible to prove for all the clock valuations. Then, we consider that the clock regions are completely covered if the input actions are accepted in the clock vertices of the clock region and if the output actions are received in a valuation of their clock regions.

4 Test execution

The ISO suggested a test architecture [44] for testing telecommunication protocols has been used for many practical purposes. But it does not integrate timing aspects.

4.1 Maximum time coverage

Many studies propose to test a timed system in chosen time valuations [45, 29, 30]. But they do not ensure to cover  all  time intervals. In our case, we use the well-known principle: the earliest moment and the latest  moment. It is used for a long time in the validation of real-time systems.

Here, to test an action ai of a transition Ri -- ai --> Rj,  We perform 2 distinct tests : one for the valuation begin(Ri) and another one for the valuation  end(Ri).

The originality of this solution is the calculation of the valuation begin(Ri) . The clock valuations of the preamble actions  are calculated in such way that the system will execute ai at the earliest moment of Ri. The  valuations Vk of the execution of each action ak of the previous sequence S= a1, a2, .., ai will be solved by following a reverse path until the root (sometimes). For each input action ak, we choose the greatest  valuation Vk, which is less than Vk+1, as an execution moment of ak .

4.2 Multiple executable test generation

A test case is successful if all its actions are correctly executed at the extreme valuations of their clock regions for input actions and at any  valuation of its clock region for output actions.

For a test case with n input actions, we extract 2n executable test cases. This exponential number is not satisfactory for the industry. So, we can reduce it to  2n for testing all the system actions with a maximum time coverage but without any guarantee on the influence of timing constraints between actions. In fact, each input action is experimented with a starting valuation and ending valuation  of its clock region but the valuation of other action fixed to only one valuation.

4.3 An adapted test architecture

The only architecture which deals time is in [45]. It considers a strong hypothesis: the ability to to implementation clocks. This assumption is contrary to the black box scheme. Then we suggested in [46] a more realistic  architecture which maintains the black box principle. The system clocks are simulated by the tester and only reasonable assumption is considered: clock of the implementation grow with the same rate than the specification ones. This architecture is illustrated in FIG-15.
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FIG-14: Test architecture adapted to timed systems 

For the systems we study, we only need to add clock resets on the transition labels of the clock regions. This constraint helps testers to simulate correctly specification clocks.

To express all timed test cases cases, we have develop the execution of the test case into a tree, called Execution Tree. All the paths of this tree are the test sequences of the system. They may be translated easily in the TTCN notation [47].

5 Conclusions and future work

We have presented the main results about protocol testing and our contributions to testing real-time systems. We have shown that the next challenge in this area is to consider the time aspect during the testing step. We have presented some techniques dealing with this field. Most of them are inspired by all the works done before on untimed systems. The problem of timed testing is how to express and how to test the time infinity used by any system. Many theoretical frameworks have been proposed in [40,31,36] for solving the infinity of time but are not still useful for any practical use. We are also dealing with testing a real telecommunication protocol dealing with multimedia flow named H223. The preliminary results are promising.

 All the techniques developed in this paper are being integrated in general tool 
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